

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

«СОГЛАСОВАНО»	«УТВЕРЖДАЮ»
Руководитель ОП Лазерная физика_ »	Заведующий кафедрой общей и экспериментальной физики —————————————————————————————————

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Нелинейная лазерная оптика

Направление подготовки 03.06.01 Физика и астрономия Профиль «Лазерная физика» Форма подготовки (очная)

курс 2 семестр 3,4
лекции 36 час.
практические занятия не предусмотрены.
лабораторные работы <u>не предусмотрены.</u>
с использованием МАО лек18 час.
всего часов контактной работы 36 час.
в том числе с использованием МАО _18_ час., в электронной форме час.
самостоятельная работа108 час.
в том числе на подготовку к экзамену18 час.
курсовая работа / курсовой проект семестр
зачет3 семестр
экзамен4 семестр

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации), утвержденного приказом Министерства образования и науки РФ от 30.07.2014 № 867

Рабочая программа обсуждена на заседании кафедры общей и экспериментальной физики, протокол № 10 от <0.2» июля 2018 г.

Заведующий кафедрой общей и экспериментальной физики, к.х.н., доцент В.В. Короченцев

Составитель: д.ф.-м.н., Ромашко Р.В.

Оборотная сторона титульного листа РПУД

I. Рабочая программа Протокол от «13» июня	пересмотрена на заседании кафедры: 2019 г. № 9
Заведующий кафедрой (подпись)	директор академического департамента Короченцев В.В. (И.О. Фамилия)
Протокол от « <u>09</u> » янва	пересмотрена на заседании кафедры (академического департамента): оя 2020 г. № 5 директор академического департамента Короченцев В.В. (И.О. Фамилия)
Протокол от «28» янвај	а пересмотрена на заседании кафедры (академического департамента) оя 2021 г. № 5 циректор академического департамента Короченцев В.В. (И.О. Фамилия)

Аннотация рабочей программы учебной дисциплины «Нелинейная лазерная оптика»

Рабочая программа дисциплины «Нелинейная лазерная оптика» разработана для аспирантов 2 курса по направлению 03.06.01 «Физика и астрономия», профиль «Лазерная физика».

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации), утвержденного приказом министерства образования и науки РФ от 30.07.2014 г. № 867 и учебным планом подготовки аспирантов по профилю «Лазерная физика».

Дисциплина «Нелинейная лазерная оптика» входит в обязательные дисциплины вариативной части модуля Б1.В.ОД

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа. Учебным планом предусмотрены лекционные занятия (36 часов), самостоятельная работа студента (108 час.), из которых 18 час. — на подготовку к экзамену. Дисциплина реализуется на 2 курсе в 3 и 4 семестре, форма контроля: зачет (3 семестр) и экзамен (4 семестр).

Цель: изучение оптических эффектов, возникающих при прохождении сильного оптического излучения в среде.

Задачи:

- формирование знаний об основных физических процессах, явлениях и закономерностях, связанных с распространением сильного оптического излучения в среде;
- формирование знаний об основных областях применения нелинейных оптических эффектов, тенденциях и направлениях развития нелинейной оптики;
- формирование навыков классификации нелинейных оптических эффектов;
- формирование навыков расчета параметров устройств нелинейной оптики;
- формирование навыков выявления современных тенденций применения нелинейных оптических эффектов в электронике, измерительной и вычислительной технике;
- формирование навыков применения нелинейных оптических эффектов в электронике, измерительной и вычислительной технике.

Для успешного изучения дисциплины «Нелинейная лазерная оптика» у обучающихся должны быть сформированы следующие предварительные компетенции:

- готовность к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-2);
- В результате изучения данной дисциплины у обучающихся формируются следующие общепрофессиональные и профессиональные компетенции.

Код и формулировка компетенции	Этапы формирования компетенции		
ОПК-1 Способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий	Знает	основной круг проблем (задач), встречающихся в области нелинейной лазерной оптики, и основные способы (методы, алгоритмы) их решения; основные источники и методы поиска научной информации в области нелинейной лазерной оптики	
	Умеет	находить (выбирать) наиболее эффективные методы решения основных типов проблем (задач), встречающихся в нелинейной лазерной оптике; анализировать, систематизировать и усваивать передовой опыт проведения научных исследований в области нелинейной лазерной оптики	
	Владеет	современными методами, инструментами и технологией научно-исследовательской деятельности в области нелинейной лазерной оптики; навыками публикации результатов научных исследований, в том числе полученных лично обучающимся, в рецензируемых научных изданиях	
ПК-1 Способность самостоятельно ставить и решать задачи в области лазерной физики	Знает	основные физические явления и закономерности, лежащие в основе работы устройств нелинейной лазерной оптики	
	Умеет	решать задачи в области применения устройств нелинейной лазерной оптики	
	Владеет	навыками самостоятельного решения задач в области применения устройств нелинейной лазерной оптики	
HW a D	Знает	основные методики проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики	
ПК-2 Владение основными методами постановки и проведения экспериментов в области лазерной физики, в том числе нелинейной оптики и лазерной спектроскопии	Умеет	собирать в соответствии с предложенной блок- схемой экспериментальные установки для проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики	
	Владеет	навыками разработки и создания экспериментальных установок для проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики	
ПК-3 Владение навыками разработки и создания функциональных	Знает	основные параметры и особенности применения современных устройств нелинейной лазерной оптики	
элементов и устройств	Умеет	осуществлять выбор устройств нелинейной	

для различных областей лазерной физики,		лазерной оптики для решения поставленной задачи
включая высокоточные оптические измерения, модификацию и обработку материалов	Владеет	навыками оптимального выбора устройств нелинейной лазерной оптики для решения поставленной задачи

Для формирования вышеуказанных компетенций в рамках дисциплины «Нелинейная лазерная оптика» применяются следующие методы активного/ интерактивного обучения: мозговой штурм, дискуссия.

І. СТРУКТУРА И СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОЙ ЧАСТИ КУРСА

Лекционные занятия (36 час.) Семестр 1 (18 часов)

Раздел І. Линейные и нелинейные явления в оптике (2 час.)

Тема 1. Линейные и нелинейные явления в оптике (2 час.)

Уравнения Максвелла и нелинейная поляризация вещества. Классификация нелинейных явлений, характерные интенсивности света. Уравнение связанных волн.

Раздел II. Генерация второй гармоники и другие эффекты второго порядка (4 час.)

Тема 1. Генерация второй гармоники (2 час.)

Интерактивна форма: дискуссия

Генерация второй гармоники. Условия фазового синхронизма: угловой и частотный синхронизм. Перекачка энергии в гармонику и обратно.

Тема 2. Другие нелинейные эффекты второго порядка (2 час.)

Генерация суммарных и разностных частот. Оптическое выпрямление.

Раздел III. Параметрическая генерация и усиление света (4 час.)

Тема 1. Параметрическая генерация света (2 час.)

Интерактивна форма: дискуссия

Параметрическая генерация света. Вырожденный и невырожденный режимы.

Тема 2. Корреляция параметрических волн (2 час.)

Условия корреляции параметрических волн. Наблюдение корреляции параметрических волн.

Раздел IV. Самофокусировка – нелинейный эффект третьего порядка. (4 час.)

Тема 1. Самофокусировка (2 час.)

Интерактивна форма: дискуссия

Механизмы самофокусировки. Волноводный и многофокусный режимы самофокусировки.

Тема 2. Самомодуляция световых импульсов (2 час.)

Условия самомодуляции световых импульсов. Наблюдение самомодуляции световых импульсов.

Раздел V. Спонтанное и вынужденное рассеяние света (4 час.)

Тема 1. Спонтанное рассеяние света (2 час.)

Комбинационное, релеевское, рассеяние Мандельштама-Бриллюена

Интерактивна форма : мозговой штурм

Тема 2. Вынужденное рассеяние (2/1 час.)

Интерактивна форма: мозговой штурм

Вынужденное рассеяние; связь стоксовой и антистоксовой волн. Обращение волнового фронта при рассеянии.

Семестр 2 (18 час.)

Раздел VI. Четырехволновое смешение (4 час.)

Тема 1. Четырехволновое смешение (2 час.)

Интерактивна форма: дискуссия

Физический механизм четырехволнового смешения. Условия четырехволнового смешения. Опыты по наблюдению четырехволнового смешения. Связь четырехволнового смешения с известными механизмами нелинейности.

Тема 2. Обращение волнового фронта (2 час.)

Понятие об эффекте обращения волнового фронта. Применение обращения волнового фронта.

Раздел VII. Нелинейные явления высших порядков (4 час.)

Тема 1. Генерация высших гармоник (2 час.)

Интерактивна форма: дискуссия

Понятие высших гармоник. Физический механизм генерации высших гармоник.

Тема 2. Многофотонное поглощение и ионизация (2 час.)

Ионизация. Физический механизм многофотонного поглощения.

Раздел VIII. Двухуровневый атом в сильном поле (2 час.)

Интерактивна форма: мозговой штурм

Тема 1. Двухуровневый атом в сильном поле (2 час.)

Осцилляции Раби. Самоиндуцированная прозрачность. Генерация эхо.

Раздел IX. Нелинейные эффекты в волоконных световодах (2 час.) Тема 1. Нелинейные эффекты в волоконных световодах (2 час.)

Условия возникновения нелинейных эффектов в волоконных световодах. Методы борьбы с нелинейными эффектами в волоконных световодах.

Раздел Х. Другие нелинейно-оптические явления (2 час.)

Тема 1. Другие нелинейно-оптические явления (2/1 час.)

Интерактивна форма: мозговой штурм

Физический механизм нелинейных явлений на поверхности сред. Опыты по наблюдению нелинейных явлений на поверхности сред. Плазма. Физический механизм возникновения нелинейных эффектов в плазме. Вакуум. Понятие нелинейности вакуума. Условия наблюдения нелинейности вакуума.

Раздел XI. Нелинейные эффекты в фоторефрактивных кристаллах (4 час.)

Тема 1. Фоторефрактивный эффект (2 час.)

Диффузионный механизм формирования поля пространственного заряда. Фоторефрактивные материалы. Дрейфовый механизм формирования поля пространственного заряда.

Тема 2. Нелинейное взаимодействие волн в фоторефрактивных кристаллах (2 час.)

Интерактивна форма: дискуссия

Двухволновое смешение в фоторефрактивном кристалле. Уравнение связанных волн. Обращение волнового фронта на основе динамической голограммы, формируемой в фоторефрактивном кристалле. Пропускающая, отражательная и ортогональная геометрии взаимодействия волн в фоторефрактивном кристалле. Адаптивный интерферометр на основе динамической голограммы, формируемой в фоторефрактивном кристалле.

II. СТРУКТУРА И СОДЕРЖАНИЕ ПРАКТИЧЕСКОЙ ЧАСТИ КУРСА

Не предусмотрены учебным планом

ІІІ. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Нелинейная лазерная оптика» представлено в Приложении 1 и включает в себя:

- план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;
- требования к представлению и оформлению результатов самостоятельной работы;
 - критерии оценки выполнения самостоятельной работы.

IV. КОНТРОЛЬ ДОСТИЖЕНИЯ ЦЕЛЕЙ КУРСА 1 семестр

Ŋ <u>o</u>	Контролируемые	Коды и этапы формирования компетенций		Оценочные средства	
п/п	разделы / темы дисциплины			текущий контроль	промежуточная аттестация
1	Линейные и нелинейные явления в	ОПК-1	знает	Собеседование (УО-1)	Вопросы 1 – 3

	оптике		умеет, владеет	Контрольная работа (ПР-2)	
2	Генерация второй гармоники и другие	ОПК-1	знает	Собеседование (УО-1)	Вопросы 4 – 5
	эффекты второго порядка		умеет, владеет	Тест (ПР-1)	
2	Параметрическая генерация и усиление света	ОПК-1	знает	Собеседование (УО-1)	Вопросы 6 – 7
3			умеет, владеет	Тест (ПР-1)	
4	Самофокусировка — 4 нелинейный эффект третьего порядка	ОПК-1	знает	Собеседование (УО-1)	Вопросы 8 – 9
4			умеет, владеет	Контрольная работа (ПР-2)	
5	Спонтанное и	ПК-1,	знает	Собеседование (УО-1)	Вопросы 10 – 12
5 вынужденное рассеяние света	ПК-2, ПК-3	умеет, владеет	Тест (ПР-1)		

Семестр 2

No	Контролируемые	Коды и этапы формирования компетенций		Оценочные средства	
п/п	разделы / темы дисциплины			текущий контроль	промежуточная аттестация
6	Четырехволновое смешение	ОПК-1	знает умеет, владеет	Собеседование (УО-1) Тест (ПР-1)	Вопросы 13 – 15
7	Нелинейные явления	ОПК-1	знает	Собеседование (УО-1)	Вопросы 16 – 17
,	высших порядков		умеет, владеет	Контрольная работа (ПР-2)	
Q	8 Двухуровневый атом в сильном поле	ОПК-1	знает	Собеседование (УО-1)	Вопросы 18 – 19
8			умеет, владеет	Тест (ПР-1)	
9	Нелинейные эффекты в	ПК-1, ПК-2,	знает	Собеседование (УО-1)	Вопрос 20
7	волоконных световодах	ПК-2,	умеет, владеет	Тест (ПР-1)	
10	Другие нелинейно- оптические явления	ПК-1, ПК-2,	знает	Собеседование (УО-1)	Вопросы 21 – 23

		ПК-3	умеет, владеет	Тест (ПР-1)	
11	Нелинейные эффекты в	ПК-1,	знает	Собеседование (УО-1)	Вопросы 24 – 28
	фоторефрактивных кристаллах	ПК-2, ПК-3	умеет, владеет	Контрольная работа (ПР-2)	

Фонд оценочных средств по дисциплине представлен в приложении 2.

V. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Основная литература

- 1. Акципетров, О.А. Нелинейная оптика кремния и кремниевых наноструктур [Электронный ресурс] : монография / О.А. Акципетров, И.М. Баранова, К.Н. Евтюхов. Электрон. дан. М. : Физматлит, 2012. 541 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5255.
- 2. . Маломед, Б.А. Контроль солитонов в периодических средах. [Электронный ресурс] : . Электрон. дан. М. : Физматлит, 2009. 190 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2258.
- 3. . Ландсберг, Г. С. Оптика : учебное пособие для физических специальностей вузов / Москва : Физматлит , 2010. 848 с. (1 экз.) http://lib.dvfu.ru:8080/lib/item?id=chamo:670162&theme=FEFU

Дополнительная литература

- 1. Делоне, Н.Б. Нелинейная оптика [Электронный ресурс] : . Электрон. дан. М. : Физматлит, 2003. 64 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2134.

Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Мартынова Г.П. Оптика: Конспект лекций. Самара: Изд-во "Самарский университет", 2005. 155 с. http://window.edu.ru/resource/933/74933
- 2. Кузнецов С.И. Колебания и волны. Геометрическая и волновая оптика: учебное пособие. 2-е изд., перераб., дополн. Томск: Изд-во Томского политехнического университета, 2007. 170 с. http://window.edu.ru/resource/208/75208

3. Молотков Н.Я., Ломакина О.В., Егоров А.А. Оптика и квазиоптика СВЧ: Учебное пособие. — Тамбов: Изд-во ТГТУ, 2009. — 380c. http://window.edu.ru/resource/345/68345

VI. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Приступить к освоению дисциплины следует в самом начале учебного семестра. Рекомендуется изучить структуру и основные положения Рабочей программы дисциплины (РПД). Обратить внимание, что кроме аудиторной работы (лекции) планируется самостоятельная работа, результаты которой влияют на окончательную оценку по итогам освоения учебной дисциплины. Все аудиторные и самостоятельные задания необходимо выполнять и предоставлять на оценку в соответствии с планом-графиком.

Использование материалов РПД

Для успешного освоения дисциплины следует использовать содержание разделов РПД дисциплины, которое позволяет правильно организовать самостоятельную работу аспиранта.

Рекомендации по подготовке к лекционным и практическим занятиям

Успешное освоение дисциплины предполагает активное участие аспирантов на всех этапах ее освоения. Изучение дисциплины следует начинать с проработки содержания рабочей программы и методических указаний.

При изучении и проработке теоретического материала аспирантам необходимо:

- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- перед очередной лекцией просмотреть конспект предыдущего занятия;
- при самостоятельном изучении темы сделать конспект, используя рекомендованные в РПД литературные источники. В случае, если возникли затруднения, обратиться к преподавателю в часы консультаций или на практическом занятии.

Основной целью проведения практических занятий является систематизация и закрепление знаний по изучаемой теме, формирование умений самостоятельно работать с дополнительными источниками информации, аргументировано высказывать и отстаивать свою точку зрения.

При подготовке к практическим занятиям студентам необходимо:

- повторить теоретический материал по заданной теме;
- продумать формулировки вопросов, выносимых на обсуждение;
- использовать не только конспект лекций, но и дополнительные источники литературы, рекомендованные преподавателем.

При подготовке к текущему контролю и промежуточной аттестации использовать материалы РПД (Приложение 2. Фонд оценочных средств).

VII. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения практических занятий используется оборудование научных лабораторий, оснащенных оптическими столами, оптическими компонентами для создания экспериментальных установок с использованием источников и приемников оптического излучения, большое количество измерительных приборов, персональные компьютеры.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

По дисциплине «Нелинейная лазерная оптика»

Направление подготовки 03.06.01 Физика и астрономия Профиль «Лазерная физика» Форма подготовки (очная)

Владивосток 2018

План-график выполнения самостоятельной работы по дисциплине 1 семестр

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1.	В течение семестра	Изучение разделов теоретической части курса	40 час.	Собеседование (УО-1) Тест (ПР-1) Контрольная работа (ПР-2)
3.	В течение семестра	Подготовка к зачету	14 час.	Зачет

2 семестр

№ п/п	Дата/сроки выполнения	Вид самостоятельной работы	Примерные нормы времени на выполнение	Форма контроля
1.	В течение семестра	Изучение разделов теоретической части курса	45 час.	Собеседование (УО- 1) Тест (ПР-1) Контрольная работа (ПР-2)
2.	В течение семестра	Подготовка к экзамену	9 час.	Экзамен

Методические указания по выполнению самостоятельной работы по дисциплине

Самостоятельная работа включает в себя три вида работ: изучение разделов теоретической части курса, подготовка к зачету, подготовка к экзамену.

Изучение разделов теоретической части курса осуществляется аспирантом после посвященной данной теме лекции. Задание и литературу для изучения разделов теоретической части курса преподаватель сообщает в конце лекции. Подготовку к зачету и экзамену рекомендуется осуществлять в течение семестра непосредственно после окончания изучения очередной темы по вопросам, представленным в приложении 2.

Требования к представлению и оформлению результатов самостоятельной работы

Контроль выполнения работы по изучению разделов теоретической части курса осуществляется в конце лекции в форме собеседования, теста, или контрольной работы. Контрольные работы завершают изучение разделов учебной дисциплины. Количество работ — 4. Вопросы контрольных работ представлены в приложении 2.

Критерии оценки выполнения самостоятельной работы

Критерии оценивания контрольной работы: ответ на все вопросы без ошибок — «отлично»; ответ на все вопросы с одной ошибкой — «хорошо»; ответ на все вопросы с двумя ошибками — «удовлетворительно»; ответ только на половину вопросов или ответ на все вопросы с количеством ошибок более двух — «неудовлетворительно».

При получении оценки «неудовлетворительно» считается, что аспирант не прошел текущий контроль. В этом случае проводится повторный контроль на консультации.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

По дисциплине «Нелинейная лазерная оптика» Направление подготовки 03.06.01 Физика и астрономия Профиль «Лазерная физика» Форма подготовки (очная)

Владивосток 2018

ПАСПОРТ ФОС

Код и формулировка компетенции	Этапы формирования компетенции		
ОПК-1 Способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий	Знает	основной круг проблем (задач), встречающихся в области нелинейной лазерной оптики, и основные способы (методы, алгоритмы) их решения; основные источники и методы поиска научной информации в области нелинейной лазерной оптики	
	Умеет	находить (выбирать) наиболее эффективные методы решения основных типов проблем (задач), встречающихся в нелинейной лазерной оптике; анализировать, систематизировать и усваивать передовой опыт проведения научных исследований в области нелинейной лазерной оптики	
	Владеет	современными методами, инструментами и технологией научно-исследовательской деятельности в области нелинейной лазерной оптики; навыками публикации результатов научных исследований, в том числе полученных лично обучающимся, в рецензируемых научных изданиях	
ПК-1 Способность	Знает	основные физические явления и закономерности, лежащие в основе работы устройств нелинейной лазерной оптики	
самостоятельно ставить и решать задачи в области лазерной физики	Умеет	решать задачи в области применения устройств нелинейной лазерной оптики	
	Владеет	навыками самостоятельного решения задач в области применения устройств нелинейной лазерной оптики	
HV 2 Drovers	Знает	основные методики проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики	
ПК-2 Владение основными методами постановки и проведения экспериментов в области лазерной физики, в том числе нелинейной оптики и лазерной спектроскопии	Умеет	собирать в соответствии с предложенной блоксхемой экспериментальные установки для проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики	
	Владеет	навыками разработки и создания экспериментальных установок для проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики	
ПК-3 Владение навыками разработки и создания	Знает	основные параметры и особенности применения современных устройств	

функциональных		нелинейной лазерной оптики
элементов и устройств для различных областей лазерной физики,	Умеет	осуществлять выбор устройств нелинейной лазерной оптики для решения поставленной задачи
включая высокоточные оптические измерения, модификацию и обработку материалов	Владеет	навыками оптимального выбора устройств нелинейной лазерной оптики для решения поставленной задачи

1 семестр

№	Контролируемые	Кодн	ы и этапы	Оценочны	е средства
п/п	разделы / темы дисциплины	формирования компетенций		текущий контроль	промежуточная аттестация
1	Линейные и нелинейные явления в	ОПК-1	знает	Собеседование (УО-1)	Вопросы 1 – 3
	оптике		умеет, владеет	Контрольная работа (ПР-2)	
2	Генерация второй гармоники и другие	ОПК-1	знает	Собеседование (УО-1)	Вопросы 4 – 5
2	эффекты второго порядка	OHK-1	умеет, владеет	Тест (ПР-1)	
3	Параметрическая	ОПК-1	знает	Собеседование (УО-1)	Вопросы 6 – 7
3	3 генерация и усиление света		умеет, владеет	Тест (ПР-1)	
4	Самофокусировка –	ОПК-1	знает	Собеседование (УО-1)	Вопросы 8 – 9
4	нелинейный эффект третьего порядка		умеет, владеет	Контрольная работа (ПР-2)	
	Спонтанное и	ПК-1,	знает	Собеседование (УО-1)	Вопросы 10 – 12
5	вынужденное рассеяние света	ПК-2, ПК-3	умеет, владеет	Тест (ПР-1)	

Семестр 2

No	Контролируемые	Коды и этапы формирования компетенций		Оценочные средства	
п/п	разделы / темы дисциплины			текущий контроль	промежуточная аттестация
6	Четырехволновое	ОПК-1	знает	Собеседование (УО-1)	Вопросы 13 – 15
0	смешение	OHK-1	умеет, владеет	Тест (ПР-1)	
7	Нелинейные явления высших порядков	ОПК-1	знает	Собеседование (УО-1)	Вопросы 16 – 17

			умеет, владеет	Контрольная работа (ПР-2)	
8	о Двухуровневый атом в		знает	Собеседование (УО-1)	Вопросы 18 – 19
	сильном поле	ОПК-1	умеет, владеет	Тест (ПР-1)	
9	Нелинейные эффекты в	ПК-1, ПК-2,	знает	Собеседование (УО-1)	Вопрос 20
9	волоконных световодах	ПК-2,	умеет, владеет	Тест (ПР-1)	
		ПК-1,	знает	Собеседование (УО-1)	Вопросы 21 – 23
10	Другие нелинейно- оптические явления	ПК-1, ПК-2, ПК-3	умеет, владеет	Тест (ПР-1)	
11	Нелинейные эффекты в	ПК-1,	знает	Собеседование (УО-1)	Вопросы 24 – 28
11	фоторефрактивных кристаллах	ПК-2, ПК-3	умеет, владеет	Контрольная работа (ПР-2)	

Шкала оценивания уровня сформированности компетенций

Код и	Этапы формирования компетенции		критерии	показатели
формулировк а				
компетенции				
ОПК-1 Способность самостоятел ьно осуществлят ь научно- исследовате льскую деятельност ь в соответству ющей профессиона льной области с использован ием современны х методов	знает (пороговый уровень)	основной круг проблем (задач), встречающихся в области нелинейной лазерной оптики, и основные способы (методы, алгоритмы) их решения; основные источники и методы поиска научной информации в области нелинейной лазерной оптики	воспроизводить и объяснять учебный материал с требуемой степенью научной точности и полноты	способность показать основной круг проблем (задач), встречающихся в области нелинейной лазерной оптики, и основные способы (методы, алгоритмы) их решения; основные источники и методы поиска научной информации в области нелинейной лазерной оптики
исследовани	умеет	находить	выполнять	способность
ЯИ	(продвинуты	(выбирать)	основные типы	применить знания и

1	l v			
информацио	й)	наиболее	проблем (задач),	практические
нно-		эффективные	встречающихся в	умения при
коммуникац		методы решения	нелинейной	выполнении
ионных		основных типов	лазерной оптике;	основных типов
технологий		проблем (задач),	анализировать,	проблем (задач),
		встречающихся в	систематизироват	встречающихся в
		нелинейной	ь и усваивать	нелинейной
		лазерной оптике;	передовой опыт	лазерной оптике;
		анализировать,	проведения	анализировать,
		систематизироват	научных	систематизировать
		ь и усваивать	исследований в	и усваивать
		передовой опыт	области нелинейной	передовой опыт
		проведения		проведения
		научных	лазерной оптики	научных
		исследований в области		исследований в
				области
		нелинейной		нелинейной
		лазерной оптики	Varannaa	лазерной оптики
	владеет		Успешное и	способность
	(высокий)		систематическое	применить
		современными	применение	фактическое и
		методами,	навыков владения	теоретическое
		инструментами и	современными	знание,
		технологией	методами научных	практические умения по
		научно-	исследований в	получению новых
		исследовательско	области	
		й деятельности в	нелинейной	знаний при самостоятельном
		области	лазерной оптики;	осуществлении
		нелинейной	успешное и	научно-
		лазерной оптики;	систематическое	исследовательской
		навыками	применение	деятельности в
		публикации	навыков	области
		результатов	публикации	нелинейной
		научных	результатов	лазерной оптики;
		исследований, в	научных	публикации
		том числе	исследований, в	результатов
		полученных	том числе	научных
		лично	полученных	исследований, в
		обучающимся, в	лично	том числе
		рецензируемых	обучающимся, в	полученных лично
		научных изданиях	рецензируемых	обучающимся, в
			научных изданиях	рецензируемых
				научных изданиях
ПК-1	знает	основные	воспроизводить и	способность
Способность	(пороговый	физические	объяснять	показать базовые
самостоятел	уровень)	явления и	учебный материал	знания и основные
ьно ставить		закономерности,	с требуемой	умения в области
и решать		лежащие в основе	степенью научной	нелинейной
задачи в		работы устройств	точности и	лазерной оптики
области		нелинейной	полноты	•
лазерной		лазерной оптики		
	<u>I</u>	1 1	I	1

физики	умеет (продвинуты й)	решать задачи в области применения устройств нелинейной лазерной оптики	выполнять типичные задачи в области применения устройств нелинейной лазерной оптики	способность применить знания и практические умения в задачах, связанных с применением устройств нелинейной лазерной оптики
	владеет (высокий)	навыками самостоятельного решения задач в области применения устройств нелинейной лазерной оптики	самостоятельно ставить и решать задачи в области применения устройств нелинейной лазерной оптики	способность применить фактическое и теоретическое знание, практические умения по получению новых знаний при самостоятельной постановке и решении задач в области применения устройств нелинейной лазерной оптики
ПК-2 Владение основными методами постановки	знает (пороговый уровень)	основные методики проведения экспериментальн ых исследований с использованием устройств нелинейной лазерной оптики	воспроизводить и объяснять учебный материал с требуемой степенью научной точности и полноты	способность показать базовые знания методик проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики
и проведения эксперимент ов в области лазерной физики, в том числе нелинейной оптики и лазерной спектроскоп ии	умеет (продвинуты й)	собирать в соответствии с предложенной блок-схемой экспериментальн ые установки для проведения экспериментальн ых исследований с использованием устройств нелинейной лазерной оптики	выполнять задания по созданию экспериментальн ых установок для проведения экспериментальн ых исследований с использованием устройств нелинейной лазерной оптики	способность применить знания и практические умения при выполнении заданий по созданию экспериментальных установок для проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики

			1	
	владеет (высокий)	навыками	выполнять усложненные задания в нетипичных ситуациях по	способность применить фактическое и теоретическое знание,
		разработки и создания экспериментальн ых установок для	созданию экспериментальн ых установок для проведения	практические умения при выполнении усложненных
		проведения экспериментальн ых исследований	экспериментальн ых исследований с использованием	заданий по созданию экспериментальных
		с использованием устройств нелинейной лазерной оптики	устройств нелинейной лазерной оптики	установок для проведения экспериментальных исследований с использованием устройств нелинейной лазерной оптики
ПК-3 Владение навыками разработки и создания функционал	знает (пороговый уровень)	основные параметры и особенности применения современных устройств нелинейной лазерной оптики	воспроизводить и объяснять учебный материал с требуемой степенью научной точности и полноты	показать базовые знания параметров и особенностей применения современных устройств нелинейной лазерной оптики
ьных элементов и устройств для различных областей лазерной физики, включая	умеет (продвинуты й)	осуществлять выбор устройств нелинейной лазерной оптики для решения поставленной задачи	выполнять типичные задачи по выбору устройств нелинейной лазерной оптики для решения поставленной задачи	способность применить знания и практические умения в задачах, связанных с выбором устройств нелинейной лазерной оптики
высокоточные оптические измерения, модификацию и обработку материалов	владеет (высокий)	навыками оптимального выбора устройств нелинейной лазерной оптики для решения поставленной задачи	самостоятельно осуществлять выбор оптимальных устройств нелинейной лазерной оптики	способность применить фактическое и теоретическое знание, практические умения по выбору оптимальных устройств нелинейной лазерной оптики

Промежуточная аттестация студентов по дисциплине проводится в форме зачета и экзамена в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Критерии выставления оценки на зачете/экзамене по дисциплине

Оценка	Требования к сформированным компетенциям
«отлично»/ «зачтено»	Оценка «отлично» выставляется аспиранту, если он
	глубоко и прочно усвоил программный материал,
	исчерпывающе, последовательно, четко и логически
	стройно его излагает, умеет тесно увязывать теорию с
	практикой, свободно справляется с задачами, вопросами и
	другими видами применения знаний, причем не
	затрудняется с ответом при видоизменении заданий,
	использует в ответе материал монографической
	литературы, правильно обосновывает принятое решение,
	владеет разносторонними навыками и приемами
	выполнения практических задач.
«хорошо»/ «зачтено»	Оценка «хорошо» выставляется аспиранту, если он твердо
	знает материал, грамотно и по существу излагает его, не
	допуская существенных неточностей в ответе на вопрос,
	правильно применяет теоретические положения при
	решении практических вопросов и задач, владеет
	необходимыми навыками и приемами их выполнения.
«удовлетворительно»/	Оценка «удовлетворительно» выставляется аспиранту, если
«зачтено»	он имеет знания только основного материала, но не усвоил
	его деталей, допускает неточности, недостаточно
	правильные формулировки, нарушения логической
	последовательности в изложении программного материала,
	испытывает затруднения при выполнении практических
	работ.
«неудовлетворительно»	Оценка «неудовлетворительно» выставляется аспиранту,
	который не знает значительной части программного
	материала, допускает существенные ошибки, неуверенно, с
	большими затруднениями выполняет практические работы.
	Как правило, оценка «неудовлетворительно»
	«неудовлетворительно» ставится студентам, которые не
	могут продолжить обучение без дополнительных занятий
	по соответствующей дисциплине.

Вопросы к зачету

- 1. Уравнения Максвелла и нелинейная поляризация вещества.
- 2. Классификация нелинейных явлений, характерные интенсивности света.
 - 3. Уравнение связанных волн.
- 4. Генерация второй гармоники. Условия фазового синхронизма: угловой и частотный синхронизм. Перекачка энергии в гармонику и обратно.
- 5. Генерация суммарных и разностных частот. Оптическое выпрямление.

- 6. Параметрическая генерация света. Вырожденный и невырожденный режимы.
 - 7. Корреляция параметрических волн.
- 8. Механизмы самофокусировки. Волноводный и многофокусный режимы самофокусировки.
 - 9. Самомодуляция световых импульсов.
- 10. Комбинационное, релеевское, рассеяние Мандельштама-Бриллюена.
 - 11. Вынужденное рассеяние; связь стоксовой и антистоксовой волн.
 - 12. Обращение волнового фронта при рассеянии.

Вопросы к экзамену

- 13. Четырехволновое смешение.
- 14. Связь четырехволнового смешения с известными механизмами нелинейности.
- 15. Понятие об эффекте обращения волнового фронта. Применение обращения волнового фронта.
 - 16. Генерация высших гармоник.
 - 17. Многофотонное поглощение и ионизация.
 - 18. Осцилляции Раби.
 - 19. Самоиндуцированная прозрачность. Генерация эхо.
 - 20. Нелинейные эффекты в волоконных световодах.
 - 21. Нелинейные явления на поверхности сред.
 - 22. Нелинейные эффекты в плазме.
 - 23. Нелинейность вакуума.
 - 24. Фоторефрактивный эффект.
- 25. Двухволновое смешение в фоторефрактивном кристалле. Уравнение связанных волн.
- 26. Обращение волнового фронта на основе динамической голограммы, формируемой в фоторефрактивном кристалле.
- 27. Пропускающая, отражательная и ортогональная геометрии взаимодействия волн в фоторефрактивном кристалле.
- 28. Адаптивный интерферометр на основе динамической голограммы, формируемой в фоторефрактивном кристалле.

Оценочные средства для текущего контроля

Текущая аттестация студентов по дисциплине проводится в соответствии с локальными нормативными актами ДВФУ и является обязательной.

Текущая аттестация по дисциплине проводится в форме контрольных мероприятий по оцениванию фактических результатов обучения аспирантов и осуществляется преподавателем.

Вопросы для контрольных работ

Контрольная работа №1

Вариант 1

- 1. Нелинейное просветление среды. Вывести зависимость коэффициента поглощения от интенсивности.
- 2. Самофокусировка света в нелинейной оптической среде.

Вариант 2

- 1. Многофотонное поглощение. Оптический пробой.
- 2. Самодефокусировка и самоканализация света в нелинейной оптической среде.

Вариант 3

- 1. Объясните возникновение эффекта насыщения, используюя простейшую модель поглощающей среды.
- 2. Самомодуляция света в нелинейной оптической среде. Механизм формирования оптических солитонов.

Контрольная работа №2

Вариант 1

- 1. Какими причинами может быть объяснена зависимость показателя преломления от интенсивности света?
- 2. Генерация высших оптических гармоник. Генерация второй гармоники. Оптическое детектирование.

Вариант 2

- 1. Нелинейная поляризация среды. Нелинейные восприимчивости.
- 2. Фазовый синхронизм (ФС). Когерентная длина. Способы достижения ФС.

Вариант 3

- 1. Параметрическое преобразование частоты света.
- 2. Параметрическая генерация света произвольной частоты. Генерация субгармоник.

Вариант 4

- 1. Объясните с помощью модели ангармонического осциллятора возникновение вторичных волн с кратными частотами.
- 2. Квазиволновой синхронизм.

Контрольная работа №3

Вариант 1

- 1. Вынужденное рассеяние Мандельштама-Бриллюэна.
- 2. Спектры вынужденного комбинационного рассеяния света.

Вариант 2

- 1. Обращение волнового фронта (ОВФ) на основе вынужденного рассеяния Мандельштама-Бриллюэна. Условия возникновения ОВФ.
- 2. Зависимость интенсивности вынужденного комбинационного рассеяния света от направления.

Вариант 3

- 1. Вынужденное комбинационное рассеяние (ВКР) света в нелинейно-оптической среде. Отличия ВКР от спонтанного рассеяния.
- 2. Фотонное эхо.

Контрольная работа №4

Вариант 1

- 1. Фоторефрактивный эффект.
- 2. Диффузионный механизм формирования поля пространственного заряда.

Вариант 2

- 1. Фоторефрактивные материалы.
- 2. Дрейфовый механизм формирования поля пространственного заряда.

Вариант 3

- 1. Двух-волновое смешение в фоторефрактивном кристалле. Уравнение связанных волн.
- 2. Обращение волнового фронта на основе динамической голограммы, формируемой в фоторефрактивном кристалле.

Вариант 4

- 1. Пропускающая, отражательная и ортогональная геометрии взаимодействия волн в фоторефрактивном кристалле.
- 2. Адаптивный интерферометр на основе динамической голограммы, формируемой в фоторефрактивном кристалле.

Вопросы для самоконтроля

Раздел I. Линейные и нелинейные явления в оптике

- 1. Укажите связь уравнений Максвелла и нелинейной поляризации вещества.
- 2. Какие бывают нелинейные явления?
- 3. Запишите уравнение связанных волн.

Раздел II. Генерация второй гармоники и другие эффекты второго порядка

- 1. Как осуществляется генерация второй гармоники?
- 2. Каковы условия фазового синхронизма?

- 3. Как осуществляется перекачка энергии в гармонику и обратно?
- 4. Как осуществляется генерация суммарных и разностных частот?
- 5. Что такое оптическое выпрямление?

Раздел III. Параметрическая генерация и усиление света

- 1. Что такое параметрическая генерация света?
- 2. Объясните вырожденный и невырожденный режимы генерации.
- 3. Что такое корреляция параметрических волн?

Раздел IV. Самофокусировка - нелинейный эффект третьего порядка

- 1. Объясните механизмы самофокусировки.
- 2. В чем состоят волноводный и многофокусный режимы самофокусировки?
- 3. Как осуществляется самомодуляция световых импульсов?

Раздел V. Спонтанное и вынужденное рассеяние света

- 1. Что такое комбинационное рассеяние?
- 2. Что такое Рэлеевское рассеяние?
- 3. Что такое рассеяние Мандельштама-Бриллюена?
- 4. Что такое вынужденное рассеяние?
- 5. Какова связь стоксовой и антистоксовой волн?
- 6. Как осуществляется обращение волнового фронта при рассеянии?

Раздел VI. Четырехволновое смешение

- 1. Что такое четырехволновое смешение?
- 2. Обясните связь четырехволнового смешения с известными механизмами нелинейности?
- 3. Обясните эффект обращения волнового фронта.
- 4. Как применяется обращение волнового фронта.

Раздел VII. Нелинейные явления высших порядков

- 1. Как осуществляется генерация высших гармоник?
- 2. Как осуществляются многофотонное поглощение и ионизация?

Раздел VIII. Двухуровневый атом в сильном поле

- 1. Что такое осцилляции Раби?
- 2. Объясните явление самоиндуцированной прозрачности?
- 3. Как осуществляется генерация эхо?

Раздел IX. Нелинейные эффекты в волоконных световодах

1. Какие нелинейные эффекты наблюдаются в волоконных световодах?

Раздел Х. Другие нелинейно-оптические явления

1. Какие бывают нелинейные явления на поверхности сред?

- 2. Перечислите нелинейные эффекты в плазме?
- 3. Что такое нелинейность вакуума?

Раздел XI. Нелинейные эффекты в фоторефрактивных кристаллах

- 1. В чем состоит фоторефрактивный эффект?
- 2. Как осуществляется диффузионный механизм формирования поля пространственного заряда?
- 3. Какие бывают фоторефрактивные материалы?
- 4. Объясните дрейфовый механизм формирования поля пространственного заряда.
- 5. Объясните двухволновое смешение в фоторефрактивном кристалле.
- 6. Объясните, как происходит обращение волнового фронта на основе динамической голограммы, формируемой в фоторефрактивном кристалле.
- 7. Начертите схемы пропускающей, отражательной и ортогональной геометрии взаимодействия волн в фоторефрактивном кристалле.
- 8. Как построить адаптивный интерферометр на основе динамической голограммы, формируемой в фоторефрактивном кристалле?